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Abstract

Fighting malware, and paticulary botnets is a challenging task. Pri-
oritization of botnets to fight first is often led by personal intuition or
the customers needs. Within this paper we show two different methods
for measuring botnet prevalence. The first method takes only the size of
a botnet into account. Using this method we show that it is prone to
artefacts of the used database and not reliable. The second method is our
developed malice value metric, which is a transparent, comparable and
comprehensible way to measure the prevalence of malware and botnets.
Comparing the values for 15 botnets the malice value produces numbers
which match the expectations.

1 Introduction

Malware, and particulary botnets, are an everlasting threat to computer se-
curity. Over the years botnets evolved from specially crafted IRC clients like
the Virut family [39] to very sophisticated pieces of software that uses state-
of-the-art encryption for communication [11]. There are many questions to be
answered if you want to fight malware and botnets. One of these question to
be answered is: ,What are today’s most prevalent botnets?“, or in other words:
»,Which botnet should we fight first?“. The answers to these questions are not
given as easy as it may seem. With this work we would like to show two differ-
ent approaches to answering this question. We point out the weakness of only
considering the size of a botnet as a prevalence factor and instead present a new
way to estimate the real impact of different botnets. We present a metric for the
malice value which describes the “badness” of a piece of malware, in specific: of
a botnet.



1.1 Motivation

How to measure the prevalence of botnet families? To measure something, a
scale is needed that assigns values to the different malware families. So what
should the scale be? How does one assign values to rate malware families?

2 First Try: Botnet prevalence by size

The first step to measure the prevalence of botnets is to identify the relevant
factors and scale and to determine the ranking. A trivial attempt would be
to measure the prevalence of a given botnet is simple: The bigger the botnet
the more prevalent it is. The idea behind this is simple: If a spam botnet
has many infected hosts, it could send more spam and therefore could do more
damage. The same applies to any other malicious activity a malware could
utilize (DDoS, Data stealing, encryption of personal data etc.). Following this,
the size of a botnet is the scale for prevalence. The botnet size has been subject
to investigations many times and all of them have their specific problems[18].
Rossow et al.[33] measured the size of P2P botnets using crawling peer lists
and sensor nodes. Their results indicate that some botnets contain more than
a million infected hosts. For centralized botnets the sizes are more difficult to
measure. One can get the most accurate number of zombies by taking over a
centralized botnet[36]. Even if a centralized botnet is infiltrated its actual size
and number of active bots is difficult to measure as a botnet could use multiple
linked C&C servers [14]. Step two is to assign numbers to the different malware
families and botnets specifically to create a ranking. For this we decided to take
different data sources, which should be as comprehensive as possible, to get the
best overview. Many security companies and AV vendors present their findings
about malware and botnets in public reports. In this first trivial attempt we
use these reports as database.

2.1 Artefacts of the database

The main problem with these databases is that you cannot get any accurate
information about them. For example in Microsoft’s SIR[24] the source of data
is reported to be “over 600 million computers worldwide”, whereas other vendors
do not give a number[9, 40]. The naming of malware is a problem too. Different
vendors have different names or “labels” for the same piece of malware. For
example: The Rimecud (Microsoft) botnet is also known as Palevo, Mariposa,
Butterfly and Pilluz. This results in manual work to do: one has to take care of
this by comparing the names and looking for synonyms. Withinn these reports
only “disinfected” hosts are counted, so it is more like a size that describes the
“number of hosts that had been infected once”. Last but not least many of the
reported malware in the “Top 10 in 2013” are not botnets at all (for example a
signature like “Keygen” or “autorun”) and therefore could not be used.



2.2 Databases

The trivial attempt relies on the following sources:

e Symantec Security Threat Report 2013[38]

e Microsoft SIR 14[24]

e McAfee Threats Report Fourth Quarter 2012[22]
e eset Global Threat Trends April 2013[9]

e TrendMicro 3Q 2012 Security Roundup[40]

e F-Secure Threat Report H2 2012[10]

e FortiGuard Threat Report (website)[13]

The table below lists the source, its database size in terms of contributing
sensors and how much the top 10 malware accounts for in this database. For
example: In Symantec’s Security Threat Report 2013 the top 10 malware is

responsible for 40% of all infections. This was reported by "[...]well over 133
Mio. clients, servers and gateway systems|...]" [38]

Source Size of Database Top 10 is % of total

Symantec 133 Mio. 40

Microsoft 600 Mio. 54

McAffee ,millions* n/a

ESET n/a 17

TrendMicro n/a n/a

F-Secure n/a n/a

Fortiguard 1 Mio. 5

This table also illustrates the artefacts using such databases as stated above.
The total number of malware family names were 48 and of those 43 were unique.
Note that not all reports count the “Top 10” of all infections, therefore the total
number is not 70, as seven reports each with 10 (as in Topl0) malware listed.

2.3 Method

To correlate these data we have chosen a simple approach. We count the oc-
currence of a specific malware among all lists and divide this by the average
position in all lists. This would be the rating for the final position.

present in X lists

ral = TP
average position in lists

For example: Malware A is in three out of seven lists and is rated in list one
at position two, in list two at position one and in list three at position three.
Its average position in lists is 1+§7+3 = 2 . To determine its final position (rat)
we take the number of lists malware A is present in (three) into account. The

final rating for malware A is rat = % =15.



2.4 Result

Taking the ratings using the method above we create the final list by sorting it
from lowest rating to highest. Using this, and by removing all members of the
list that are not known to be botnets, the result is shown in the table below.

Position Botnet number of lists average position rating
1 ZeroAccess 4 3 1.33
2 Conficker 5 3.8 1.31
3 Dorkbot 4 5.5 0.72
4 Sality 3 4.33 0.69
5 Ramnit 2 4 0.5
6 Zeus 2 6 0.33

Botnet are named as the “most common” used for them as known to the
author.

2.5 Discussion

The main problem resulting from this approach are database artifacts screwing
the results (see table above). But if you consider the artefacts of the databases
which where used, the list makes perfect sense. ZeroAccess is a banking Trojan
based on the Zeus toolkit and a very big botnet with an estimated 350,000
infected hosts active[33]. Since ZeroAccess is a big and well known botnet,
anti virus vendors are trying hard to produce signatures and remove it from
the infected hosts of their customers. Conficker on the other hand is an “old”
inactive botnet, but educated guesses say it may still be spread on hundreds of
thousand hosts. There are signatures for all versions of Conficker and almost
every popular anti virus software will remove it. Position two for Conficker
could be explained by the fact that more and more computers are online as
the availability of high bandwidth grows. These computers may use old OS
installations and therefore not have all the security updates available which
prevent the exploit that Conficker uses to infect systems.

2.6 Conclusion

To measure the prevalence of botnets using this method produces a result which
could be explained well but is not sophisticated. The rating this methods pro-
duces could not be taken as an advice which botnet we should fight first, be-
cause if you look at Conficker on position two, for example, every security expert
would argue that it is no longer active, the exploit does not work anymore and
as soon as you install AV software you get rid of it. So following this conclusion
there must be another way to measure the prevalence of botnets. We want to
take more factors into account for the rating and not have the artefacts of our
database have such a huge negative impact on the results.



3 Creating a metric to measure botnet preva-
lence

3.1 Motivation

As shown in the section above a more sophisticated approach to measure botnet
prevalence is needed. First of all the new method must fulfil the following
requirements:

e It must rely on multible factors
e It must be transparency

e It must be comparability

e It must be comprehensiveness

The previous method where we used the number of reported infections as
the size of a botnet to describe its prevalence was prone to multiple artifacts as
shown previously. To use multiple factors to describe a botnets prevalence is
necessary. Transparency and comprehensiveness are needed because the results
the new metric produces should be reproducible and show exactly why a specific
result is created. Comparability is needed as we want to rank different botnets
and make a statement about which botnet is more malicious then others.

3.2 Factors for botnet prevalence

To create a metric which satisfies this requirements the first thing to do is to
identify the factors. There are several factors that could be considered and they
will be discussed below.

3.2.1 Size

Size is definitely a factor which describes the prevalence of a botnet. But the
question is: how big should its impact on the result be? Let’s consider two
botnets A and B. Botnet A is a spam botnet with 1 million hosts. Botnet
B is 1% the size (10,000) but it is used for stealing credit card numbers and
performing banking fraud. Considering the damage potential of those botnets
leads to the conclusion, that botnet A is more "harmless" than B from the users
point of view. This is because there are many reliable techniques in place to fight
spam. A sophisticated banking trojan could do way more damage to end users.
The next problem with size is the potential wide range of numbers. If we want
to assign a number for the prevalence, and the size is used in the metric with its
“actual” number like 525,456 active bots, the magnitude would be something
between 1 and some million. So size, representing the infected machines of this
botnet, is definitely a factor, but should be handled carefully and scaled down
in some way.



3.2.2 Infection

The way and effort a botnet takes to infect a new system is the next factor to
be considered. If you have a bot that uses state of the art zero-day exploits on
websites, infects PDF files and spreads them via e-mail, it is an indicator that
the “bad guys” have put a lot of work into making their botnet work and spread
out. So you could consider such a botnet more prevalent than one which uses old
exploits, which would only work if the target system has an unpatched OS and
software. We will name this factor infection in the final metric. This factor will
take into account the different techniques used, like unpatched vulnerabilities
and spreading via network and assign values to them.

3.2.3 Stealth

Considering the potential damage a botnet could cause, another factor to be
considered is the answer to our next question: “How long could the bot hide
on a system and do its work without the user, or AV software noticing it?” For
example: If a company gets infected with a botnet that steals blueprints, this
question is critical to estimate the potential damage. Has all data been stolen or
only partially? The risk of data being stolen increases with the duration of the
bot being active. From the viewpoint of an end user this could be the following
scenario: The PC gets infected with a botnet that targets among others eBay
and Paypal credentials. The malware scans the computer for those credentials
or wait for them by installing a keylogger. If the user only log in to ebay on
weekends (and has not stored his credentials on hard drive) and the malware is
detected by anti-virus before the weekend the account may not be compromised.
The duration for which a botnet or malware in general stays hidden on a system
is one factor to be taken into account. We name this factor stealth.

3.2.4 Activity

Today’s botnets start their task as soon as they infect a new system: They
connect to their Command and Control (C&C) server and wait for commands.
As example, IRC botnets like Dorkbot[25] sends and receives "PING PONG'
messages every 30 seconds. On the other hand there are botnets like Conficker:
these are botnets that could do a lot of damage, as they have a large number
of infected machines, but are no longer active. This must be considered in the
metric. Another advantage of taking this factor into account is, that we can
make a statement about how much the prevalence of a botnet decreases over
time if it is taken offline or is no longer active. Summarizing activity is the
factor that describes the minimum time a given botnet has been active.

3.2.5 Resilience

The resilience of a botnet has a huge impact on the effort one must make to bring
it down. Resilience will represent the techniques used by a botnet to make it
more resilient like using Peer to Peer (P2P) or encrypted Command and Control



messages. A centralized IRC botnet could be taken offline by locating the server
and cut the power line. If it uses fast flux techniques to change domain names[27]
or a Domain Generation Algorithm (DGA) to produce hundreds of possible C&C
domains to contact the more complicated it is to take it offline or interfere its
work. Each technique a botmaster uses makes the botnet more resilient and
more dangerous. These techniques are used as parameters to calculate values
and will add up to a final score for this factor. The resilience of a botnet
therefore is another factor we will use in the metric.

3.2.6 Target

The intended target of a botnet is another critical factor to measure its preva-
lence. Many botnets target end users with potentially unpatched and out-
dated operating systems and software. But there are botnets and malware,
like Stuxnet and Flame, that specifically target parts of a country’s industry
or critical infrastructure. The effort to infect those systems are much higher,
as corporations and governments use their own security infrastructure like IDS,
IPS and whole security departments, which work all day to prevent malware
from infecting the infrastructure. So a botnet that targets critical environments
should be considered more dangerous.

3.2.7 Damage

The actual damage potential of a botnet is hard to estimate. Security companies
do provide numbers like “Spam costs 100 million US Dollar a year” but assigning
a financial damage value to a specific botnet is a challenging task. It may
be possible for banking Trojans but can if at all only be roughly estimated
when measuring the damage done by botnets that target companies or critical
infrastructure. Therefore we will not use this factor in our final metric.

3.3 Creating a model for the factors

To meet the requirement of comprehensibility, every identified factor must have
a set of characteristics with each one assigned a value to it. We provide a
default value for every factor to make the metric work in an environment with
less information coverage. The following numbers assigned for the different
characteristics should be considered as an example, as there is a lot of place
for discussions which characteristic should be rated higher or lower. The values
assigned to the different characteristics of a factor will be named a model for
the metric.

3.3.1 Size

The size of a botnet can be described as number between 1 and infinity! and
there is by definition a value we can use. The metric must limit to an intervall

Ipractical values are natural numbers



that affect the prevalence but are not the only crucial factor. We consider a
default botnet to have a size of about 100,000 infected machines?.

Value
Minimum 1
Maximum Infinity
Default 100,000

3.3.2 Infection

The ways a malware and therefore a bot infects a computer should represent
the effort undertaken by the "bad guys" and their techniques used. As malware
could use multiple ways to infect a system, like using unpatched vulnerabilities
in web browsers or being downloaded by other malware we assign each technique
a value and add them all together to get the final value for this factor.

Technique Value
uses unknown vulnerability 0.325
uses unpatched vulnerability 0.175
spreads automatically via network 0.05
needs to be executed by user 0.05
uses removable device (eg. USB) 0.05
not detected by any AV 0.1
not detected by IDS/IPS 0.1
spreads by websites 0.05
downloaded via other malware 0.05
uses email/documents 0.05

We set the default value for this factor to 0.325. This represents a botnet
using an unpatched vulnerability (0.175), spreads via infected websites (0.05)
and is not detected by anti-virus software (0.1). As our research shows this is
true for an average botnet. The two most dangerous techniques a malware could
use to infect a system are unknown and/or unpatched vulnerabilities in OS and
other software. These two characteristics add up to half of the maximum risk
value of 1 in this model. Using unknown vulnerabilities should be considered
way more dangerous than using known vulnerabilities it is rated twice as high.
This factor takes into account the possibility that malware may change over
time. Malware gets detected by AV and IDS/IPS as signatures are created and
distributed to end users. This could be used to create values which represent
the infection factor at the time the malware is discovered and the time AV
signatures are available and maybe patches for the former unknown vulnerability
are available. This is related to the Common Vulnerability Scoring System

2This default value is reached by taking the rounded average value of estimated infected
hosts of about 32 known botnets



presented by Mell et al.[30] but as our metric rates the malware using the
vulnerability i slightly different aproach is needed.

Value
Minimum 0
Maximum 1
Default 0.325

3.3.3 Stealth

The stealth factor represents the dangers created by a botnet remaining unde-
tected on a system. For example: A keylogger could gather more passwords
and credentials maybe for more then one user if it is undetected. Another good
example is Stuxnet, which could unfold its full damage potential by disturbing
the centrifuges over a long period of time. We choose a quadratic growth of this
factor for our model to fit this circumstance best. We want to map the days of a
year (365) to the values from 0.01 to 1 with quadratic growth. To achieve this,
we square the value and multiply this with 365 to get the threshold of time.
To get better thresholds to work with, we will not take the exact values but
instead use whole days/weeks/month which are close to the exact value. The
table below shows the values for this factor in our model.

Scale Square Days Days hidden (upper bound) Value

0.01 0.0001 0.0365 1 days 0.0001
0.1 0.01 3.65 3 days 0.01
0.2 0.04 14.6 2 weeks 0.04
0.3 0.09 32.85 1 month 0.09
0.4 0.16 58.4 2 month 0.16
0.5 0.25 91.25 3 month 0.25
0.6 0.36 131.4 4 month 0.36
0.7 0.49 178.85 6 month 0.49
0.8 0.64 233.6 7 month 0.64
0.9 0.81 295.65 9 month 0.81
1 1 365 >=1 year 1

The default value for this factor is 0.04. This represents a botnet staying
hidden on a system for a time no longer than two weeks, which is a rough
guess by the author taking into account the time it takes to analyse a new
malware, create a signature and make it available for AV software. This is
similar to the “not detected by AV” characteristic from the factor infection, but
at that factor it is rated towards the actual mode of infection. If a malware
is detected by AV-Software and you get infected, nonetheless you either have
no AV-software installed or have not installed the latest update. This fact is
represented by the infection factor. The stealth factor therefore represents the



time a specific bot that infected your system is neither detected by IDS, AV-
software nor manual investigation after observing strange behaviour in your
network or on the infected system.

Value
Minimum  0.0001
Maximum 1
Default 0.04

3.3.4 Activity

Representing if a botnet is active at all or have not been active for a given time
period this value should decrease with the time a botnet has been inactive. The
activity shall decrease in the same way as the stealth values. Therefore we take
the quadratic values in this model like we did for stealth but the time is inversed.

Last time active (lower bound) Value

> 1 year 0.0001
> 9 month 0.01
> 7 month 0.04
> 6 month 0.09
> 4 month 0.16
> 3 month 0.25
> month 0.36
> 1 month 0.49
> 2 weeks 0.64
> 3 days 0.81
Today 1

Analysing a database of over 500,000 samples we assume in this model the
average botnet receives or asks for commands several times a day and therefore
the default value for this factor is 1. A botnet is considered “active” if it sends
commands.

Value
Minimum  0.0001
Maximum 1

Default 1

3.3.5 Resilience

Like malware uses different ways to infect a system, the resilience of a botnet
can utilize a variety of tactics to increase its resilience. The characteristics and
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their values used in our model are described in the following table. P2P is
considered to be the most resilient resilience a botnet could use, as there is no
single point of failure. This technique is assigned the highest value, which is
twice as much as a centralized C&C resilience would score. All characteristics
and values in this model are described in the table below.

Technique used Value
centralized C&C 0.2

P2P C&C 0.4
Fast Flux 0.05
Double Fast Flux 0.1
DGA 0.1

updating possible 0.05
encrypted C&C 0.1

The default value for the factor resilience is calculated like this: a botnet
that uses a centralized C&C server (0.2) employs h a DGA (0.1), encrypts its
C&C commands (0.1), and has update functionality (0.05). This scores 0.45
points in our model.

Value
Minimum 0
Maximum 1
Default 0.45

3.3.6 Target

The final factor we integrate into our metric is the target of a botnet. There are
many different targets like end users, companies, and critical infrastructures. To
represent the differences we assign a subset of all end users the lowest value (like
the botnet targets a specific country) and critical infrastructure the highest, as a
botnet affecting the infrastructure of a country could have catastrophic impact
on society and economy. Our model uses the following numbers for the described
characteristics.

11



Target Value

Limited users 1.01
Many users 1.1
All users 1.2
SME 1.3
A . 1.4
Mid-sized companies 15
Big companies 1.6
Banks 1.7
Military 1.8
Critical Infrastructure ;'9

As the average botnets targets end users to make money (stealing credentials
etc.) the default value for target is 1.2.

Value
Minimum  1.01
Maximum 2
Default 1.2

3.3.7 Creating the metric

Since our metric considers all those factors, it represents more than the just
prevalence. We can think of it as indicator for the “badness” or “level of dan-
gerousness” of a botnet or malware. Stick to the term "malware" (malicious
software) we name the value produced by the metric the malice value of a
malware/botnet. As stated above, the malice value should be scaled down to
make the malice value meet our requirement for being comparable. The size of
botnet may vary between 1 and infinity. To scale down large numbers we use
logarithm. In the following explanation size means the footprint or number of
infected systems of a botnet. To produce values above one and in a scope that
has not the highest impact of all to the final value we normalize the size to size’

as follows:
logio(size + 10)

10
Some further explanation is needed for this part. First of all the term

sizel =1+

logio(size + 10)

As described above we want to use the logarithmic with base 10 to normalize
the actual number of infected systems. To avoid the problems of log;(1) = 0
we add a static number to the actual number of bots. The effect of this adding
gets less in higher numbers of infected systems as shown in the table below,
which compares the use of log,(size) and log,(size + 10) .

12



size logyg(size) log,(size + 10)

1 0 1.04

10 1 1.30

100 2 2.00
1000 3 3.00
10000 4 4.00
100000 5 5.00
1000000 6 6.00

To push this factor to a value range which is more in line with the value
range of the other factors we do some further normalizing shown in the table
below. Our goal is to eventually normalize to a value between one and two?.

size  logio(size +10)/10 1+ W

1 0.10 1.10

10 0.13 1.13

100 0.20 1.20
1000 0.30 1.30
10000 0.40 1.40
100000  0.50 1.50
1000000  0.60 1.60

This leaves us with the size factor between 1.10 (for a botnet with one bot)
and 2 for botnets with 10 billion bots as the table below indicates.

size size’
1 1.10
10 1.13
100 1.2
1,000 1.3
10,000 1.4
100,000 1.5
1,000,000 1.6
10,000,000 1.7

100,000,000 1.8
1,000,000,000 1.9
10,000,000,000 2

We will now scale size” with the factor stealth as they directly correlate with
the potential of a botnet to do damage and therefore create the first part of the
malice value:

mq = stealth * size’

3as this factor would be the base for an exponent a value smaller then one would result in
decreasing values
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The next factor directly affecting these two is the target of a malware. As
this is a crucial factor affecting other factors we give it a very high impact on
malice value and use it as an exponent:

me = (stealth x size’ )target

The remaining factors are directly affected by target, but not as strong as the
first three. Therefore we add these factors and scale them by target. Summarized
our final metric for the malice value of a botnet/malware is:

malice value = tar* (res + inf+ act) + (stealth = size’ )tar

Where tar denotes target, res resilience, inf infection and act activity. Mal-
ice value using the model for the factors described above results in a number
between 0.00041 and 10 when using the minimum and maximum value for every
factor except size. As infinity would not be a very useful upper bound, we use
10,000,000,000 infected machines as a fixed maximum. The probability for this
value is very low, as it would represent a botnet with more than double the
times infected hosts then there are IPv4 addresses. This is for sure a fictional
value, but can be used to create an upper bound for malice value in this case.
The table below shows the factors, their value and the resulting malice value
using minimum, maximum, and default values in this model.

minimal maximal default values Factor
0.0001 1 0.325 infection
0.0001 1 0.04 stealth

1 10,000,000,000 100,000 size

1 2 1.2 target
0.0001 1 1 activity
0.0001 1 0.45 resilience
0.00041 10.61 2.16 malice value
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3.4 Results

Using the metric to determine malice value and the models described above to assign values to the characteristics for 15 known
botnets we get the following results.

Botnet infection stealth size target activity resilience malice value
Conficker[12, 31] 0.6 0.04 3,000,000 1.2 1 0.35 2.37
Conficker (inactive) 0.275 0.0001 2,000,000 1.2 0.0001 0.35 0.75
Waldec([1, 21, 37, 16] 0.15 0.04 12,000 1.2 1 0.55 2.07
Gameover Zeus|[7, 4] 0.6 0.04 250,000 1.2 1 0.65 2.73
Gameover Zeus (inactive) 0.275 0.04 250,000 1.2 0.25 0.65 1.41
Virut[39] 0.05 0.04 300,000 1.2 1 0.35 1.71
Khelios[6, 33| 0.05 0.04 110,000 1.2 1 0.55 1.95
Citadel[23] 0.6 0.04 5,000,000 1.2 1 0.45 2.49
Koobface[26, 8] 0.15 0.04 500,000 1.2 1 0.35 1.83
Rimecud/Palevo/Maripose/Butterfly[19, 5]  0.05 0.04 800,000 1.2 1 0.35 1.71
Pushdo/Cutwail[17] 0.1 0.04 1,500,000 1.2 1 0.35 1.77
SpyEye[34, 3] 0.15 0.04 1,400,000 1.2 1 0.25 1.71
Tdss/ Tdl / Alureon[20, 2] 0.15 0.04 90,330 1.2 1 0.75 2.31
Stuxnet[29] 0.8 1 24 2 1 0.65 6.22
Flame[35] 0.6 1 10 2 1 0.45 5.37
ZeroAccess[15, 33] 0.1 0.04 350,000 1.2 1 0.75 2.25
Sality[28] 0.05 0.04 100,000 1.2 1 0.7 2.13

For each botnet sources where queried to determine the characteristics and using the values from our model for the factors.



4 Discussion

We have created a metric to determine the malice value of a malware/botnet
as comprehensible and comparable as possible. We evaluated and introduced
additional factors to the size of a botnet, as this has proven to be too vulnerable
to artefacts of the used database and other facts. Looking at the results for some
different, known botnets of today and the past, we could observe that the metric
produces values that are not contradictory. Let’s look at the Gameover Zeus
botnet for example. This botnet has been taken offline by a coordinated strike
from the FBI and several security researchers around the world . The time it
was active it scores with a malice value of 2.73. Gameover Zeus represents a
high sophisticated piece of malware that uses many advanced techniques and
has hundreds of thousand infected machines. Comparing it to the time after its
takedown the malice value drops down to 1.11 due to being inactive and security
patches being available to fix the used exploits. Another example is the Stuxnet
botnet. This botnet had a completely different purpose then Gameover Zeus
as it has targeted the infrastructure of the Iran. It too uses many advanced
techniques and has been hidden on the systems for a long time. The actual
damage it has done can only be estimated, but by scoring with a malice value
of 6.22 it is in a very different range representing the fact that this is actually
an Advances Persistent Threat (APT) and therefore way more dangerous than
malware that tries to infect as many user machines as possible. Last but not
least comparing the results using the two different methods which are described
here fixes weaknesses of the first method which only uses the reported infection
from AV vendors. If we use the malice value to rearrange the ranking created
by the trivial approach lead to the results in the table below.

Ranking Method 1 New ranking malice Value

ZeroAccess ZeroAccess 2.25
Conficker Sality 2.13
Dorkbot Ramnit 1.95
Sality Dorkbot 1.70
Ramnit Zeus (inactive) 1.41
Zeus Conficker 0.75

As shown in the table, the botnets which are known to be inactive fall down
to the bottom of the list. Ramnit, Dorkbot, the inactive Zeus and the Conficker
botnet would even not be in a new ‘Top6’ list if the malice value would be used
to create a ranking.

5 Conclusion
To rate the “badness” of malware is nothing new, various security companies

nowadays are doing the same. Our approach to a metric for the malice value we
presented in this document is different. The metric fulfils the requirements of
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being transparent, comparable and comprehensible. It works best if you have as
much a-priori information as possible, but works with pre-defined default values
for the different factors - which meet the requirements, too. To compute the
malice values for 15 well known botnets we created a model that assign numbers
to the characteristics for the different factors in the metric. The numbers for
the model were taken from personal experience of the author analysing malware
and botnets the past three years. By various examples the results of the metric
match with the authors personal estimations.

6 Future work

The values used in a model for creating the malice value should constantly
be updated to follow the changes and new dangers of malware. This could
be achieved by monitoring the development and analysis of new malware to
identify shifting priorities in any factor. A detailed mathematical analysis of
the presented formula could reveal if any of the described and used factors are
not as significant as assumed and could therefore be ignored.

7 Related work

The only other work known that tries to measure malware, is the Malware
Rating System presented by Bagnall and French[32]. Our malice value metric
is a different approach, as it takes into account a higher number of different
factors. The Common Vulnerability Scoring System be Mell et al[30] focuses on
the vulnerability itself where our malice value focuses on the malware.
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