

A CIP-PSP funded pilot action
Grant agreement n°325188

Deliverable D1.4.1 Specification of Tool Group "Malicious or Vulnerable

Websites"

Work package WP 1, Requirements & Specifications
Due date M12
Submission date 31/01/2014
Revision Revision 2
Status of revision

Responsible partner Fraunhofer FKIE
Contributors Jan Gassen (Fraunhofer FKIE), Jonathan P. Chapman (Fraunhofer

FKIE)

Project Number CIP-ICT PSP-2012-6 / 325188
Project Acronym ACDC
Project Title Advanced Cyber Defence Centre
Start Date of Project 01/02/2013

Dissemination Level

PU: Public X

PP: Restricted to other programme participants (including the Commission)

RE: Restricted to a group specified by the consortium (including the Commission)

CO: Confidential, only for members of the consortium (including the Commission)

 Page 2 / 31

Version history

Rev. Date Author Notes

1 29/08/2013

Jan Gassen (Fraunhofer
FKIE), Jonathan P.
Chapman (Fraunhofer
FKIE)

First draft

2 30/01/2014

Jan Gassen (Fraunhofer
FKIE), Jonathan P.
Chapman (Fraunhofer
FKIE)

Incorporating feedback
received from ACDC partners

Glossary

ACDC Advanced Cyber Defence Centre
AHPS Atos High Performance Security
CCH Central Clearing House
SIEM Security Information and Event Management
URL Uniform Resource Locator
WWW World Wide Web

Table of contents

1. Executive summary .. 5
2. Introduction ... 5
3. Relevance of Website Analysis in the ACDC Context ... 5
4. Detection and Mitigation Aspects Covered ... 6

4.1. Malicious Website Analysis ... 6
4.1.1. Delivered content ... 7
4.1.2. Website source code .. 7
4.1.3. Network sensor data .. 7
4.1.4. Device sensor data ... 7
4.1.5. Reputation data .. 8

4.2. Vulnerable Website Analysis ... 8
4.2.1. Delivered Content .. 8
4.2.2. Website Source Code ... 8
4.2.3. Vulnerability Scanner ... 8

4.3. Redirection of Malicious Traffic .. 9
4.3.1. CMS Plugin ... 9
4.3.2. Webserver Plugin ... 9
4.3.3. External tool ... 9

5. General Requirements ... 10
5.1. Participation in the Tool Group... 10

 Page 3 / 31

5.2. Communication Interface ... 10
5.3. Input .. 10
5.4. Output ... 10
5.5. Documentation ... 11

5.5.1. General Requirements ... 11
5.5.2. Service .. 11
5.5.3. Solution .. 12
5.5.4. Appliance ... 12

6. Tools in Tool Group 1.1.4 ... 13
6.1. AHPS .. 14

6.1.1. Input ... 14
6.1.2. Output .. 15

6.2. HoneyUnit ... 15
6.2.1. Input ... 16
6.2.2. Output .. 17

6.3. PDF Scrutinizer .. 17
6.3.1. Input ... 18
6.3.2. Output .. 18

6.4. SiteVet ... 19
6.4.1. Requirements .. 19
6.4.2. Output .. 19

6.5. Skanna ... 19
6.5.1. Input ... 20
6.5.2. Output .. 20

6.6. WebCheck ... 20
6.6.1. Input ... 20
6.6.2. Output .. 20

7. Inter-Tool Communications ... 20
7.1. Data Model ... 20
7.2. Interaction within the Malicious or Vulnerable Website Analysis Tool Group 21

7.2.1. Providing Data Triggering Independent Analysis ... 21
7.2.2. Tools Augmenting Previous Analysis ... 21
7.2.3. Communication aspects of tool group 1.1.4 ... 21

7.3. Interaction with other ACDC components .. 22
7.3.1. Scope of Data Transmissions ... 23
7.3.2. Communication with the Central Clearing House ... 24
7.3.3. Communication with other ACDC tools ... 28

8. Conclusion .. 28
9. Annex ... 30

9.1. Messages ... 30
9.1.1. Authentication/Subscription Request Message .. 30
9.1.2. Subscription Response Success Message .. 30
9.1.3. Submission Request Message .. 30
9.1.4. Submission Response Success Message .. 30
9.1.5. Data Set Ready Notification ... 30
9.1.6. Request Data Set Message .. 30
9.1.7. Requested Data Set Not Available Message .. 30
9.1.8. Requested Data Set Element Not Available Message ... 30

Table of figures

Figure 1 : Covered aspects by tool for malicious website analysis ... 13

 Page 4 / 31

Figure 2: Covered aspects by tool for vulnerable website analysis .. 13
Figure 3: Required information by tool ... 14
Figure 4: Overview about the HoneyUnit analysis process ... 16
Figure 5: Sample output of HoneyUnit .. 17
Figure 6: Overview about the functionality of PDF Scrutinizer ... 18
Figure 7: Sample output for PDF Scrutinizer ... 19
Figure 8: Information required and provided by tools of tool group 1.1.4. Generated information that
is not required by other tools is omitted for the sake of clarity. .. 22
Figure 9: Visualisation of two approaches for organising data exchange within the ACDC solution.
Geometric shapes represent data exchanged or stored. .. 23

file://vboxsrv/sharedfolder/ACDC/ACDC%20D1.4.1/ACDC_Deliverable%201.4.1.docx%23_Toc378775598
file://vboxsrv/sharedfolder/ACDC/ACDC%20D1.4.1/ACDC_Deliverable%201.4.1.docx%23_Toc378775602
file://vboxsrv/sharedfolder/ACDC/ACDC%20D1.4.1/ACDC_Deliverable%201.4.1.docx%23_Toc378775602

 Page 5 / 31

D1.4.1 Specification of Tool Group "Malicious or Vulnerable Websites"

1. Executive summary

In this document, we provide an overview to the analysis of malicious or vulnerable websites
within the ACDC context. We define the requirements that tools contributed to the Malicious or
Vulnerable Website Analysis must satisfy and describe the tools that were contributed so far. This
document goes on to analyse the benefits and drawbacks of different communication models and
defines a lightweight communication protocol for communications between a tool and the CCH.
Given the aforementioned analysis, tool-to-tool communication should be avoided in favour of
immediately storing results as data elements in the CCH using the respective protocol. Tools that
depend on such results may retrieve them through a subscription mechanism to provide
additional analysis or data. Our solution supports the early dissemination of relevant information,
including to the stakeholders, while reducing cost for implementation and maintenance.

2. Introduction

Since the world wide web not only gained its reputation as a key technology, providing efficient
access to information, and even more so since the protocols associated with it turned out to be
enablers for complex applications and business models such as cloud services, few sites with
Internet access can afford to deny their users access to the WWW. This fact is exploited by
malware authors, including botnet operators, by using the WWW for their malicious cause.
Malware authors use exploits for web browsers to infect new computers, web servers to
distribute their malware and use or replicate the HTTP protocol for their botnet’s command and
control. Access to the WWW servers needed for these purposes can either be obtained by renting
them from “no questions asked” or “bullet proof” Internet service providers or by gaining access
to non-malicious servers, e.g. by exploiting vulnerabilities in their operating systems or
applications running on them.
With no simple and reliable technique known for distinguishing malicious and non-malicious use
of WWW technology, the abuse is likely to remain undiscovered until significant damage has been
inflicted on a party. Thus, to provide comprehensive and effective protection against botnets or at
least mitigation of their activities, the ACDC solution must provide tools to discover both the fact
that a website is likely to be used for malicious activities and prevent the acquisition of servers for
malicious activities by warning operators of insecure equipment or software about known
vulnerabilities. With regard to websites, tools addressing these issues are organised in the ACDC
tool group “Malicious or Vulnerable Websites”. This document introduces these tools,
summarizes their requirements and defines how they will interact with each other and other
components of the ACDC solution.
In section 3, we describe the relevance of website analysis in the ACDC context. Section 4
discusses the aspects that should be taken into consideration for website analysis, followed by a
section on the requirements for tools that should be contributed to the Malicious or Vulnerable
Website Tool Group. The tools that were contributed to the tool group are described in section 6.
Section 7 goes on to describe the communication protocol for the tool group and finally, we
summarise our conclusions in section 8.

3. Relevance of Website Analysis in the ACDC Context

Botnet operators have been abusing websites for malicious activities for many years. Thus,
website analysis is an important part of the ACDC solution. Detecting this kind of abuse is
challenging because attackers try to conceal their modifications as far as possible. The versatility
of potential modifications further complicates a fast and reliable detection of compromised
websites. As a consequence, detection should not only identify compromisation but also

 Page 6 / 31

vulnerability of a website. By detecting and subsequently closing website vulnerabilities, website
owners can prevent abuse in the first place. Therefore, website analysis within the ACDC solution
covers both, the detection of malicious websites and the detection of vulnerabilities of websites.
In this section, we briefly recapitulate the different ways for abusing websites with regard to
botnet activities.
The most striking way in which websites are abused for botnet activities is by inserting malicious
code that is used to perform attacks against visitors. Whenever a user visits a manipulated
website with a vulnerable browser, its system can be infected with a malware to become part of a
botnet. These so-called drive-by-download attacks may also be performed by websites that were
created solely for this purpose. In order to attract more potential victims, these websites are
often advertised, e.g. in spam email.
Another less obvious way to incorporate otherwise benign websites into botnet activities is to
make the website itself, or the respective webserver, part of a botnet. Since webservers are
commonly able to execute entire programs, e.g. scripts written in languages like PHP, these
servers can be used to execute malicious programs that take part in botnet activities directly. To
achieve this, botnets exploit website vulnerabilities that allow them to upload malicious scripts
and have them executed by the webserver.
For both kinds of malicious website abuse, attackers can employ various techniques which makes
it hard to apply a general approach for detecting all different kinds of website manipulations.
Moreover, different information or even a different point of observation may be required to
detect certain malicious websites. Websites carrying out attacks against their visitors may, for
instance, be detected remotely, since attack-related code hast to be transmitted to the visitor. On
the other hand, webservers participating in botnet activities directly cannot necessarily be
identified by analysing the websites they deliver. Instead, network or device sensor data is
required to detect malicious behaviour of the webserver.
The different types of information required for the detection of different kinds of malicious
activities also directly affect the parties that are able to apply a particular analysis technique.
Whereas drive-by-downloads can theoretically be detected by everyone, detecting webservers as
part of a botnet may require direct access to the server or its network infrastructure. The latter
techniques are therefore restricted to website owners or providers of respective infrastructures
like hosting providers.

4. Detection and Mitigation Aspects Covered

Various aspects can be taken into account in order to identify malicious or vulnerable websites.
Some of these aspects may provide certainty about the maliciousness of an examined website
whereas others may only provide hints. Furthermore, the analysis of these aspects is commonly a
trade-off between speed and scalability on the one hand and accuracy on the other. For the ACDC
solution, analysis results for different aspects provided by different tools will be submitted to the
central clearing house. This central storage of the results allows combining versatile information,
aiding the reliability and effectiveness of malicious and vulnerable website detection.
The following sections outline the different kinds of information that can be used to identify
vulnerable or malicious websites. They also discuss how each kind of information can be used to
analyse websites, which analysis results can be gained and by whom the analysis can be applied.
This section closes with a brief excurse on traffic redirection as a mitigation technique.

4.1. Malicious Website Analysis

Detecting malicious websites includes the detection of abused and otherwise benign
websites as well as the detection of websites that were explicitly created to be malicious.
Infecting otherwise benign websites can be achieved for example by exploiting cross-site
scripting vulnerabilities. Thus, attackers may be able to include their own JavaScript or HTML

 Page 7 / 31

code on the attacked website. This code can either be used to directly attack the website’s
visitors or to redirect them to another malicious website.
Furthermore, it also covers the detection of successfully attacked webservers that directly
take part in botnet activities like performing distributed denial-of-service attacks. Besides
participating in a botnet as a client, an infected webserver could also be used as a C&C server
to control the behaviour of other clients within a botnet. These attacks can be performed for
example by uploading a malicious script to the server and using a file inclusion vulnerability
to execute it.

4.1.1. Delivered content

Webservers deliver heterogeneous content like HTML documents, PDF documents or
Flash content to a client’s browser. The browser subsequently interprets the received
content itself or by providing it to the respective plugin or external application. To
exploit vulnerabilities in the client’s interpreting application, the malicious code has to
be transmitted to the client. Thus, by analysing the received content, such attacks can be
detected. Since attackers are aware of this possibility, they try to obfuscate the attacks
as far as possible, making it considerably harder for adversaries to detect them.
Furthermore, attacks may only be carried out against victims from certain geographic
locations or take the HTTP referrer into consideration. As a result, the content delivered
by webservers can be used to detect attacks against clients, e.g. drive-by downloads, but
this can be challenging in practice.

4.1.2. Website source code

Apart from static HTML documents, many websites rely on dynamically generated
content. This content can be generated for example by an individual set of scripts or by
complete content management systems. These scripts usually generate HTML
documents on demand that are then transmitted to the client. The code generating the
page on the server remains invisible to a website’s visitor. In order to detect malicious
scripts uploaded to the server, which are used to turn the webserver into a botnet client,
the website’s source code as well as uploaded files can be scanned for malicious
content. Similar to other detection techniques, malicious content may be heavily
obfuscated, rendering a reliable detection hard. Furthermore, direct file access to the
webserver is required to analyse a website’s source code.

4.1.3. Network sensor data

Observing the communication of a webserver with other entities over the network can
provide clues about whether a webserver is part of a botnet in two ways. First, the bot
script may either actively contact the botnet’s C&C server or be contacted by botnet
clients. Secondly, the bot script may take part in botnet activities like sending spam or
launching DDoS attacks. Both activities require network communication and can thus be
detected by analysing network sensor data. This however requires the sensor to be in a
position where the entire communication of a webserver can be observed. Furthermore,
especially command and control messages may be difficult to differentiate from regular
traffic.

4.1.4. Device sensor data

Many attacks against webservers start with sending specially crafted HTTP requests to
the webserver. These requests can be used for example to exploit XSS or SQL injection
vulnerabilities. When such a request is send to a webserver, it can be logged for further
analysis. This kind of logging for example is enabled by default for Apache webservers.

 Page 8 / 31

By deploying a device sensor analysing a webserver’s log files such attacks can be
detected, indicating an infection. Furthermore, other indicators can be observed on
webservers as on any other computer system, e.g. the creation of suspicious processes.
Accessing this data for analysis however requires direct access to the webserver and
since there is no precise a priori knowledge on how to identify an attack with respect to
the indicators monitored by such a solution, it may neither be able to detect each
possible attack nor be able to completely avoid false alarms.

4.1.5. Reputation data

Besides observing a website or a webserver directly, other information can be used to
indicate a malicious website as well. One kind of information that can be exploited to
achieve this is reputational information. If a website has been abused to deliver malware
repeatedly in recent past, it is likely that this website will deliver malware again. As
another example, if a website is frequently mentioned within spam emails, this may
indicate malicious activities related to that website. To apply these techniques, no
special permissions are required to access the webserver. However, such data can only
indicate whether a website is malicious, i.e. it does not provide certainty.

4.2. Vulnerable Website Analysis

If a malicious activity is detected for a website which is known to be legitimate, this is a
strong indicator for a vulnerability existing in the website’s software that has been
successfully exploited. This kind of detection however requires that the website is already
infected, which could have been prevented if the respective vulnerability had been detected
and closed in time. Consequentially, it is also important to analyse websites for vulnerabilities
that have not yet been exploited in order to prevent websites from being infected.
The respective approach is similar to the analysis of malicious websites even though it has a
different goal. Therefore, some aspects of a website that would be analysed are similar to
those used for malicious website analysis. These aspects as well as how they can be used to
identify vulnerable websites are described in the following section.

4.2.1. Delivered Content

Even though the content delivered by webservers does generally not contain
information about vulnerabilities, i.e. the vulnerability is not present within the content
itself, it can still be used to indirectly identify potential vulnerabilities. In many cases, the
delivered content contains information about the generating content management
system, for example within a Meta-tag. If there are CVEs for the given version of that
content management system, the website is very likely to be vulnerable. This technique
does not require direct access to the analysed webserver.

4.2.2. Website Source Code

Instead of using the content generated by a CMS, its source code can be scanned for
vulnerabilities directly. This can be done using signatures for known vulnerabilities,
especially for common CMSs. Furthermore, website scripts can be scanned for
vulnerable API calls, providing hints about a website’s potential vulnerabilities. Logic
errors or other programming flaws that may lead to vulnerabilities are difficult to detect
in general and thus, these techniques may not be able to reliably detect a website’s
vulnerabilities. Furthermore, these techniques require direct access to the webserver
and can thus only be applied by website owners or their service providers.

4.2.3. Vulnerability Scanner

 Page 9 / 31

Vulnerabilities of a website can also be detected by active probing, similar to what is
done by attackers. To do this, special requests are sent to a website and its reactions are
observed. This technique can be used to e.g. detect XSS or SQL injection vulnerabilities
by automated trial and error. Since these requests are however similar to real attacks,
applying this technique is usually not legal without explicit permission from the
website’s owner. Thus, while this technique can in principle be used by anyone, it may
be prohibited altogether or limited to people or organisations acting on a direct
mandate from a website’s owner.

4.3. Redirection of Malicious Traffic

Detecting vulnerabilities in websites is feasible for detecting vulnerabilities known in advance
only. Active vulnerability scanners on the other hand may be able to detect certain unknown
logic errors, or other programming flaws that might lead to vulnerabilities, but are restricted
in their application to only a few cases. In case these two approaches are not applicable,
either due to technical or legal restrictions, there is another way of preventing a website
from being infected without actually knowing about particular vulnerabilities. This can be
done if a particular type of attack is known, even though it is unknown whether this attack
can be applied to a certain website. SQL injection attacks for example commonly feature a
characteristic pattern within POST or GET variables that are sent to a webserver. If this
pattern is detected within a request, the request can be blocked in order to protect a
potentially vulnerable website. As a result, an attacker cannot proceed even though the
vulnerability she wanted to exploit was not known in advance.
This approach can be taken even further by redirecting suspicious requests to a honeypot
system, offering the opportunity to analyse the attack in detail. This analysis may then result
in the discovery of actual vulnerabilities, which can improve the security of the real website.
The functionality required for redirecting malicious traffic to a dedicated analysis server can
be implemented on various levels. In the following section, these different levels are briefly
described.

4.3.1. CMS Plugin

If a CMS features a central component for processing request, this component may
allow filtering or redirecting requests found to be malicious. If a given CMS features a
plugin architecture, it may be possible to implement such an approach without
modifying the actual CMS. This approach can be applied by website owners without
requiring changes to the webserver or its operating system. On the other hand, the
central request-processing component may be vulnerable itself and thus not be able to
prevent such attacks.

4.3.2. Webserver Plugin

Requests sent to a website are processed by the webserver first, for example to
determine which file of a website was requested by the client. Popular webservers allow
for adding plugins that interact with the webserver and may change the way a request is
processed. By using such a plugin to scan requests for malicious patterns, requests can
be redirected before they reach a potentially vulnerable website. This approach further
allows to protect all websites that are hosted by one webserver at once. On the other
hand, it does require modifications of the webserver and thus the respective level of
permissions.

4.3.3. External tool

 Page 10 / 31

Malicious requests to a website may also be detected by using an external tool, e.g.
analysers similar to an IDS. Such a system could scan for malicious patterns on network
packet level and redirect such packets to another host. This approach would prevent
malicious requests from reaching the targeted webserver in the first place and would
thus also protect all hosted websites. On the other hand, this approach is more
challenging since detecting malicious request on network packet level is significantly
more difficult than on application level. Furthermore, this approach would not be able to
deal with encrypted requests and would thus require permissions to install new
software on the webserver’s host to be able to process such requests.

5. General Requirements

In this section, we describe the general requirements for solutions that should be contributed to
the ACDC project as a part of the Malicious or Vulnerable Website Analysis Tool Group. Unless
stated otherwise, each of these requirements has to be fulfilled by any such tool. Additional
requirements may be defined for individual tools.
In the following, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC 2119.
Where the use may not be immediately clear from the context, we use OR to indicate a non-
exclusive or. Thus, α OR β implies that either the option α, the option β or both options α and β
are valid at the same time.

5.1. Participation in the Tool Group

To participate in the Malicious or Vulnerable Website Analysis Tool Group, a tool MUST
provide data OR analysis that supports the identification of websites serving malicious
content OR vulnerable websites.

5.2. Communication Interface

Tools participating in the Malicious or Vulnerable Website Analysis Tool Group MUST
implement the communication interface described in this document. Any tool in the tool
group MUST react in the described manner, even if a specific element of the interface
specification is not applicable for it.
Tools MAY implement additional interfaces for interacting with specific tools OR third-party
applications where such interaction is not feasible using the interface defined in this
document. Further details are defined in the Input and Output sections.

5.3. Input

Tools participating in the Malicious or Vulnerable Website Analysis Tool Group MAY acquire
input from appropriate sources directly, require input from other tools or third-party sources
or use any combination of these methods to provide their functionality. Tools SHOULD use
the communication interface described in this document for acquiring data from other tools
but MAY use other means where the interface is not appropriate. This is the case in particular
if the data is unprocessed, of large volume and unlikely to be exploitable by other tools in the
solution, e.g. raw network packet dumps or unfiltered log files.
Further details MAY be specified for individual tools.

5.4. Output

Tools participating in the Malicious or Vulnerable Website Analysis Tool Group MUST provide
their analysis results OR data to the CCH, using the communication interface described in this

 Page 11 / 31

document. They MAY implement additional interfaces, with respect to the reasoning given in
section 5.3.
Data transmitted by tools MUST provide a reasonable level of abstraction with regard to the
subject or events analysed. Tools MUST NOT transmit large volume raw data such as PCAP
packet traces or log files but MAY submit an indicator for their availability instead.
Tools in the Malicious or Vulnerable Website Analysis Tool Group MUST only provide data to
the CCH that is associated with a particular website OR server providing a website or
websites. When submitting a respective data set, it MUST include sufficient details to allow
associating it with the respective website or server.
The output MUST provide hints about the maliciousness OR vulnerability of the associated
URL or server. This can be either specified directly, i.e. specifying whether a website is
malicious or vulnerable, or indirectly by providing data that can be processed by other tools
to allow for or improve reliability of such a classification.
Each tool SHOULD provide reliable data or information. If a tool cannot guarantee that the
data or information provided is correct, it should indicate the degree of certainty with regard
to the respective statement. Certainty SHOULD be based on objective measures, e.g. the
precision achieved in ground truth experiments, but MAY be based on less objective
measures such as educated guesses, if obtaining an objective measure is not feasible for a
given tool.
When a tool generates additional data or information regarding a data set already stored in
the CCH, it MUST provide the unique ID of that data set in the submission of its result to
allow for that data set to be updated. If a tool aggregates or provides analysis based on
several data sets provided by the CCH, it SHOULD include their IDs in the data set submitted
to the CCH.
Further details MAY be specified for individual tools.

5.5. Documentation

Tools may be provided as a service, a solution or an appliance. A service is maintained and
operated by and only by the tool provider, receiving data from and submitting data to the
CCH OR other parts of the solution. A solution is a programme or a set of programmes that is
maintained by the tool provider but should be deployed by partners (possibly including the
tool provider) or third parties. An appliance is a machine (explicitly including virtual
machines) that will be pre-configured by the tool provider but deployed on a partner’s or
third party’s premises.

5.5.1. General Requirements

A tool’s documentation MUST fulfil the requirements of all the deployment models
(service, solution, appliance) that will be used for that tool within the ACDC context. The
documentation SHOULD explain the data or information provided to the CCH with a
reasonable level of detail, allowing for them to be leveraged both for additional
services/solutions by ACDC partners as well as end users.
There is no required data format for the documentation. Partners SHOULD use non-
proprietary, platform-independent data formats which are easy to maintain for the tool
provider. Where such a format is not being used, the documentation MUST be provided
both in the original form as well as in a format that may not be adequate for editing but
is both non-proprietary and platform-independent (e.g. plain text, HTML or PDF). It
MUST be made available to all ACDC partners through an appropriate channel.

5.5.2. Service

The documentation for a tool providing a service to the ACDC solution MUST state the
contact details for both the person or department responsible for developing the tool (in

 Page 12 / 31

particular for bug reporting and/or feature requests) and for ensuring the availability of
the service. If availability of the service depends on the availability of a third party
service, that service and the person, company or organisation operating that service
MUST be stated in the documentation and specific contact details SHOULD be stated,
where available. Tool providers SHOULD provide this information for any third party
service they rely on, even if the availability of their own service does not depend on it.

5.5.3. Solution

When a tool is provided as a solution to be operated by ACDC partners, the
documentation MUST include the contact details for the person or department
responsible for developing the tool (in particular for bug reporting and/or feature
requests). Where the person or department providing support for deploying a solution
are not the same as for its development, the documentation MUST include their contact
details as well.
If a tool relies on third party components OR services, they MUST be listed in the
documentation, providing both information on how to obtain the component/access to
the service and any licenses OR service plan required as well as how to obtain support.
For commercial components and services, this SHOULD indicate the suggested
licensing/service plan and costs.
The documentation SHOULD describe all necessary steps for deployment and MUST
state any specific requirements regarding its operating environment, e.g. which
operating systems it is known to be compatible with or what libraries must be installed
in that environment.

5.5.4. Appliance

The documentation of a tool provided as an appliance MUST provide the contact details
for the person or department responsible for operating/maintaining the given appliance.
If the appliance requires access to external input sources, they MUST be provided in the
documentation along with information on how to obtain access to them. If the appliance
processes data or information that is not actively supplied specifically to it by the
operator, i.e. it acts as a sensor, the documentation MUST describe what data OR
information is acquired by the appliance and to what level of detail it will be available in
normal operations.
Any method that allows the tool provider to gain access to the appliance without
requiring immediate interaction with the partner hosting the appliance (e.g. through an
SSH or RDP server available over a public network) MUST be listed in the
documentation. For each of those methods, the tool provider MUST describe how the
respective interface is protected against misuse.

 Page 13 / 31

6. Tools in Tool Group 1.1.4

This section gives a brief overview to the tools contributed to the ACDC Malicious or Vulnerable
Website Analysis Tool Group. While it does provide a brief description of their inputs and outputs,
further details will be provided in their documentation in accordance with the requirements
defined in section 5.5.

Figure 1 : Covered aspects by tool for malicious website analysis

Figure 1 shows all tools of tool group 1.1.4 that are used for malicious website analysis. Each tool
is assigned to its respective aspect of malicious website analysis. If a tool covers more than one
aspect, it is assigned multiple times respectively. As indicated by the figure, most tools focus on
the content delivered by webservers since this information is publicly available. Note that all
detection aspects with respect to malicious website analysis are covered by the current set of
tools, allowing tool group 1.1.4 to provide comprehensive information about malicious websites.

Figure 2: Covered aspects by tool for vulnerable website analysis

The tools provided for vulnerable website analysis are displayed in Figure 2. Respective tools are
again associated with the aspect they cover in their analysis. As shown, two tools from tool group
1.1.4 explicitly focus on the detection of vulnerabilities in addition to malicious website analysis.
The current set of tools does not include active vulnerability scanners that probe a website for
potential vulnerabilities. It is however questionable whether such tools can be used within the
ACDC solution given the legal restrictions discussed above.

M
al

ic
io

u
s

w
eb

si
te

 a
n

al
ys

is

Delivered content

HoneyUnit

PDF Scrutinizer

Skanna

Website's source
code

WebCheck

Network sensor
data

AHPS

Device Sensor
data

AHPS

Reputation data SiteVet

V
u

ln
er

ab
le

 w
e

b
si

te
 a

n
al

ys
is

Delivered content Skanna

Website's source
code

WebCheck

Vulnerability
scanner

 Page 14 / 31

Figure 3: Required information by tool

Figure 3 outlines the different types of information required by the current set of tools. Most tools
within tool group 1.1.4 use incoming information as an identifier to determine parameters for
their analysis. These tools either use URLs or domain information to identify the website to
analyse or need signatures that are used to scan a particular set of URLs. Tools that require lower-
level data on the other hand augment submitted data with reputation information or analyse the
data for particular attacks.
As described above, the current set of tools from tool group 1.1.4 covers almost all aspects of
malicious or vulnerable website analysis. This allows providing versatile information to the central
clearing house and thus to different stakeholders. To provide this information, tool group 1.1.4
also requires heterogeneous data for analysis, as described for the individual tools below.

6.1. AHPS

AHPS (Atos High Performance Security) service is a special SIEM (Security Information and
Event Management) service provided by Atos. SIEM technology enables real-time analysis of
security events generated by network devices, servers or applications. Event data is
combined with contextual information about users, data and assets. AHPS deals with real-
time monitoring, correlation of events, notifications, reports and console views.
In the context of malicious or vulnerable website analysis, AHPS does not scan or analyse
websites directly. Instead, the system focuses on the infrastructure that hosts and supports
websites. AHPS would be able to detect anomalous behaviour to identify a potential threat or
detect that a server is under attack. Depending on the kind of attack observed, this may
indicate a website being manipulated in a malicious way. The information generated by AHPS
can then be used as input to other ACDC tools and stored in the CCH for further analysis.
Other ACDC tools may use this information to analyse attacked websites, e.g. to determine
whether these websites started delivering malicious content.
AHPS could further provide the ability to cross‐reference event data signatures with
vulnerability scanner data by means of an optional service. Using this optional service,
notifications (encapsulated by AHPS events) are automatically generated when an attack is
attempting to exploit a vulnerable system. This can be accomplished through an exploitation
detection feature and the connection to other components such as intrusion detection and
prevention systems as well as enterprise vulnerability scan results. AHPS has capabilities to
provide cross‐references between event data signatures and vulnerability scanner data. This
can be used to generate feeds containing information about vulnerabilities and threats,
normalized event signatures and associated remediation information.

6.1.1. Input

To observe website supporting infrastructures, AHPS is able to gather input from
different event sources:

 Security perimeter: Devices and software used to create a security parameter for
the observed environment.

 Operating systems: Events from different operating systems running in the
network.

Tools requiring identifier

• HoneyUnit

• PDF Scrutinizer

• Skanna

• WebCheck

Tools requiring lower-level data

• AHPS

• SiteVet

 Page 15 / 31

 Referential IT sources: The software used to maintain and track assets, patches,
configurations, and vulnerabilities.

 Application events: Events generated from the applications installed in the
network.

 User access control: Events generated from applications or devices that allow
users access to company resources.

For that purpose, AHPS uses a set of predefined connectors:

 Audit Connector

 Check Point LEA Process Connector

 Database Connector

 Data Generator Connector

 File Connector

 Process Connector

 Syslog Connector

 SNMP Connector

 SDEE Connector

 Sentinel Link Connector

 WMS Connector
The AHPS takes the input from these connectors and converts the data into a textual
map that can be processed by the collectors. Collectors parse and normalize this map and
create an AHPS Event, categorizing it according to the AHPS taxonomy of events. The
AHPS Event is enriched with additional source-specific data and, depending on the
collector, additional contextual metadata such as identity, host, vulnerability, or custom
mapped metadata. AHPS Events are later processed by a real time display, correlation
engine, dashboards, as well as by the AHPS backend server.

6.1.2. Output

AHPS provides information to the CCH in form of AHPS Events. These events are
formatted based on the Distributed Audit Services (XDAS) standard.
The AHPS Event model defines three separate actors in any event record connected by
an action:

 The Initiator causes the event to occur by taking action against the Target

 The Target is the resource affected by the Action

 The Observer detects the Action taking place and generates an event record to
describe it.

For each of them, AHPS events contain, amongst others, information about the domain,
host name, IP address, service name, service port, device name, asset criticality, etc. By
cross‐referencing event data signatures and vulnerability scanner data, events may also
contain attack names.

6.2. HoneyUnit

HoneyUnit, provided by Fraunhofer FKIE, is a generic security tool to analyse the runtime
behaviour of websites and SVG documents. HoneyUnit is not a client honeypot by itself, but a
test framework designed to provide extensive information on the runtime behaviour of
websites examined. This information can be used by unit tests in order to apply heuristics or
to check for particular exploits. Since the combination of such unit tests and HoneyUnit will
create a client honeypot, HoneyUnit can be referred to as a generic analysis component for
client honeypots.
To simulate the runtime behaviour of examined web pages, HoneyUnit is based on HtmlUnit,
which allows modelling HTML documents. It is able to simulate different browsers and can be
extended by custom JavaScript elements. Furthermore, HtmlUnit allows accessing HTML

 Page 16 / 31

elements programmatically, which allows creating unit tests for example to check for
particular content of an examined web page. To execute embedded JavaScript, HtmlUnit uses
Mozilla Rhino, which is an open source JavaScript engine written in Java. HoneyUnit is an
extension for HtmlUnit, providing the framework with the capabilities required for examining
the runtime behaviour of executed JavaScript. To provide a higher level of authenticity during
analysis, the HoneyUnit framework is able to perform regular user interactions as hovering or
clicking displayed elements. An overview, on how the analysis is performed by HoneyUnit is
shown in Figure 4.

Figure 4: Overview about the HoneyUnit analysis process

Fraunhofer FKIE provides a set of HoneyUnit tests for detecting malicious websites. Each of
those tests checks for various malicious characteristics. Through these tests, examined
websites are checked for various suspicious structural and behavioural properties:

 Hidden iFrames: Cross-site scripting commonly relies on hidden iFrames to inject
malicious content into otherwise benign websites.

 Obfuscation: Since malicious JavaScript code commonly is highly obfuscated,
obfuscation is used as another indicator for malicious websites.

 Shellcode: HoneyUnit is able to detect shellcode used by malicious websites by
applying dynamic analysis techniques.

 Suspicious variables: Strings or arrays that are passed as arguments to JavaScript
functions are checked for suspicious patterns, e.g. ".*cmd.exe .*", which may be used
to launch the windows command line interpreter.

 Heap spraying: Many malicious websites utilize heap spraying techniques to exploit
vulnerabilities in a web browser. This requires allocating large strings or arrays
containing repetitive content, which is detected by a respective test.

 Signatures: A signature-based detection of known exploits is applied on JavaScript
methods and parameters during runtime, making it resistant against common
obfuscation techniques. Therefore, this test can be used to reliably detect known
exploits after having created the respective signature.

6.2.1. Input

HoneyUnit in conjunction with the tests provided is designed to analyse websites
directly, i.e. by analysing the content that is delivered by a webserver. Therefore,
HoneyUnit has to be provided with an URL, pointing to the website that should be
analysed. In addition, HoneyUnit can also be used to analyse downloaded HMTL files.
Therefore, HoneyUnit can also be provided with suspicious HTML content directly.
HoneyUnit allows websites to be scanned for known vulnerabilities by using custom
signatures. Therefore, additional signatures could also be provided to HoneyUnit in
order to identify current CVEs. Signatures to detect vulnerable ActiveX method calls
contain the following information:

 Name: A short description of the signature

HtmlUnit Mozilla

Rhino
HoneyU

nit

Analysis component Testing component

Unit tests

URLs

Generic
information

ActiveX
Strings
Objects

...

Initialize with URL

Browser version: IE 6

Generic information

Browser version: IE 7

Generic information

...

 Page 17 / 31

 CVE: The respective CVE, e.g. CVE-2008-0090

 Class id: The id of the according ActiveX object, e.g. D050D736-2D21-4723-AD58-
5B541FFB6C11

 Method name: Name of the vulnerable method, e.g. SetPassword

 Argument: Argument value required to exploit the vulnerability, e.g. required
argument length or contained patterns.

6.2.2. Output

When its analysis is complete, HtmlUnit displays the list of tests that indicated malicious
or suspicious behaviour. For each test, a short description provides further details about
the website analysed. Consequentially, the output depends on the tests that are applied
to the examined website. A sample output of HoneyUnit for a set of 10 tests is displayed
in Figure 5. During the respective analysis, four tests indicated suspicious content. The
output can also be provided as a JSON document for processing by other tools or the
CCH.

6.3. PDF Scrutinizer

Content delivered by malicious websites is not necessarily limited to HTML documents and
JavaScript. As stated above, malicious websites can also deliver malicious PDF documents in
order to attack a victim’s browser or PDF rendering plugin respectively. To be able to analyse
this content as well, PDF Scrutinizer dynamically analyses the content of PDF documents and
identifies malicious patterns or behaviour. It can be used for example in conjunction with
HoneyUnit to expand its detection capabilities allowing a more comprehensive and thus
more accurate analysis of malicious websites.
In order to determine whether a PDF document is malicious, PDF Scrutinizer simulates the
rendering of a PDF document within a commonly used PDF displaying application. During this
process, the examined document is analysed for malicious structural content as well as for
malicious behaviour of JavaScript in the document.
This is achieved by parsing the PDF document using PDFBox and extracting embedded
JavaScript code. The extracted code is analysed by executing it through Mozilla Rhino and
observing its runtime behaviour. To be able to observe this behaviour as detailed as possible,
the API of common PDF rendering applications had to be emulated, allowing the JavaScript
code to access content within the PDF document. During the emulation, libemu is used to
detect potential shellcode used by the PDF document to exploit vulnerabilities. The general
process of analysing PDF documents using PDF Scrutinizer is depicted in Figure 6.

URI||XXXX

AnalysisTime||2464

TestTime||1011

NumTests||10

NumSuspicious||4

suspicious||testSuspiciousArguments(…): 1 very long string-argument(s) used on

an ActiveXObject

suspicious||testNopSlide(…): Possible NOP-Slide detected.

suspicious||testHeapSprayingArray(…): Detected possible Heap-Spraying array:

800 entries, all very long Strings and equal

suspicious||testSuspiciousUnescape(…): Method unescape() returned suspicous

value. Possibly shellcode.

NumExploits||0

NumExceptions||0

DONE

Figure 5: Sample output of HoneyUnit

 Page 18 / 31

Figure 6: Overview about the functionality of PDF Scrutinizer

For detecting suspicious or malicious content, PDF scrutinizer features the following
detection capabilities:

 StringLengthTester: PDF Scrutinizer detects unusually long strings, e.g. strings
containing more than 100,000 characters, to identify potential NOP-sleds or
shellcode.

 HeapSprayDetector: To detect heap spraying performed by a malicious JavaScript,
PDF Scrutinizer detects large arrays containing sequences of similar data.

 ShellcodeTester: To detect shellcode within suspicious strings, libemu is used.

 Signatures: Regular expressions are applied to the original JavaScript code as well as
dynamically generated code to identify known attacks. Signatures can be used to
identify either suspicious or malicious content.

 VulnerableMethodCalls: PDF Scrutinizer employs a list of vulnerable methods to
check whether a Script relies on potential vulnerabilities.

6.3.1. Input

PDF Scrutinizer is able to analyse local PDF files, or PDF documents provided by a
webserver. Therefore, PDF Scrutinizer either requires a URL pointing to a PDF
document online or the content of a PDF document to analyse.
To be able to detect current CVEs, PDF Scrutinizer also requires updated signatures.
These signatures can be provided to PDF Scrutinizer in form of a regular expression,
for example “util.printf\(\s*\"%45000f\"” for CVE-2008-2992.

6.3.2. Output

After completing its analysis, PDF Scrutinizer displays a list of raised heuristics as well
as a list of CVEs that were detected through signatures. A sample output of PDF
Scrutinizer is displayed in Figure 7. As shown, the analysed PDF document contained
four malicious characteristics. Moreover, three known CVEs could be detected within
the document. Consequentially, PDF Scrutinizer sets the final classification to
“malicious”. To provide more detailed information about the attack, PDF Scrutinizer
stores enclosed PDF documents or detected shellcode for further analysis. The
output can also be provided as a JSON document which could be processed by other
tools or the CCH.

parsing

Parsed
document

Execute
JavaScript

Dynamic
heuristics

libemu

PDFBox Rhino

Extracted
JavaScript

API
emulation

 Page 19 / 31

Figure 7: Sample output for PDF Scrutinizer

6.4. SiteVet

SiteVet is a web service that provides data on malicious activity hosted worldwide.
Data is combined from multiple sources – community partners as well as CyberDefcon’s
own research data – and processed using unique algorithms to provide meaningful
results.
The focus is on Autonomous Systems and the “reputation” of hosts.

6.4.1. Requirements

SiteVet requires the provision of ASN data as well as descriptions for malware instances
provided in the MAEC format and vulnerabilities in CVE and CVRF formats.

6.4.2. Output

Using the input data provided, SiteVet generates a reputation score for Autonomous
Systems.

6.5. Skanna

Skanna is a tool for discovering websites using vulnerable software or serving known exploits.
Currently, it receives lists of domain names from two third parties but also supports manually
submitting domain names for analysis. When analysing a domain, the index page of a WWW
server serving content under that domain is retrieved and scanned to detect the software
and technologies employed using WhatWeb. The page will also be stored and indexed for
later reference. In a second stage, the page will be scanned with an AV solution to identify
known malicious content and possible compromisation. Results are currently stored in a local
database and made available through a web interface.
To integrate Skanna into the ACDC solution, Skanna will be extended to analyse websites of
interest, e.g. potentially malicious websites, and provide both data gathered and analysis
results to the CCH.

Analysis start: Fri Aug 23 12:38:36 CEST 2013

Analysis end: Fri Aug 23 12:38:46 CEST 2013

Analysis time: 00:10

Filename: 11ae5cb8c47b59c2555dc8d680822de537d57539

MD5 Hash: 7048fb5e07d4f0aae1ee1b0d25f0e1ff

JavaScript events: true

JavaScript count: 1

heuristics raised: RegexMalicious ShellcodeTester HeapSprayDetector

StringLengthTester

vulnerabilities found:

CVE-2008-2992

API method: Util.printf

Type: buffer overflow

CVE-2007-5659

API method: Collab.collectEmailInfo

Type: buffer overflow

CVE-2009-0927

API method: Collab.getIcon

Type: buffer overflow

Classification: malicious

 Page 20 / 31

6.5.1. Input

Skanna requires the submission of website addresses that should be analysed. The tool
is currently designed to retrieve lists of domain names provided by third parties and
manual submissions, but will be extended to allow the submission of more versatile
representations of internet addresses, e.g. URLs.

6.5.2. Output

Analysis results are currently provided through a web interface and include (where
applicable):

 Status of the website, i.e. whether it is online or not

 Software and technologies used by the scanned website

 Results of antivirus scan
Additional features such as full-text search and statistics on previously analysed websites
are provided through that interface but are not specific to a given website’s analysis.
To integrate Skanna with the ACDC solution, information on software and technologies
as well as a brief version of the AV solution’s scanning results will be provided to the
CCH as data elements associated with a given website. While services such as full text
search may not be appropriate for direct integration with the CCH, Skanna can provide
indicators that provide information on how to obtain access to these services. Statistics
derived from the data available to Skanna, providing a general overview on the scanning
results, can be provided to the CCH both on a regular schedule and upon request.

6.6. WebCheck

WebCheck, provided by CyberDefcon, is a server plugin for webmasters that identifies,
mitigates and remediates malware and vulnerabilities hosted from the server. It focuses both
on cleaning websites and on forging trust by guaranteeing a website is safe.

6.6.1. Input

WebCheck relies on the provision of descriptions for malware instances provided in the
MAEC format as well as vulnerabilities provided in CVE or CVRF formats. In addition,
WebCheck requires the provision of attack patterns provided in CAPEC format.

6.6.2. Output

WebCheck will report data on instances of vulnerabilities discovered to the CCH.

7. Inter-Tool Communications

This section discusses the potential approaches for implementing inter-tool communication with
respect to the Malicious or Vulnerable Website Tool Group and describes the solution deemed to
be most appropriate with respect to that discussion.
We briefly introduce a few terms in section 7.1 and then continue to describe the implications of
communications between tools within the tool group. Section 7.3 discusses communications with
other ACDC components and describes the protocol for that interaction as a series of message
exchanges.
In the following, the key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT",
"SHOULD", "SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to
be interpreted as described in RFC 2119.

7.1. Data Model

 Page 21 / 31

Throughout this section, we will be discussing data provided by different entities within the
ACDC solution. Below, we will distinguish between data sets and data elements. A data
element is a single atomic datum that reflects e.g. a measurement, a fact, the result of a
tool’s analysis or any other piece of information that should be provided to other entities.
Data elements may be grouped in data sets to indicate that they refer to one particular
entity, e.g. a host, website or physical device, or incident. Each data set stored in the CCH
MUST receive a unique ID to unambiguously identify the given data set throughout the ACDC
solution. We will refer to this ID as data set ID or simply ID for short.

7.2. Interaction within the Malicious or Vulnerable Website Analysis Tool Group

Analysis of malicious or vulnerable websites is a complex task that requires information from
various tools. In certain cases, however, the information provided by an individual tool may
not be sufficient to reliably determine whether a website is vulnerable or malicious. In these
cases, it could be necessary for the tools involved to interact with each other in terms of
exchanging information. This interaction may be useful either if the output of a tool is
required by another tool to start its analysis, or if one tool is used to augment the results of
another tool. Both cases are discussed in the following as well as the consequences for the
interaction between tools of tool group 1.1.4.

7.2.1. Providing Data Triggering Independent Analysis

Various tools of tool group 1.1.4 provide data or information that other tools may use
for starting their own analysis. By allowing a direct interaction between those tools,
other tools could start their analysis immediately after the first tool completes its
analysis. For example, AHPS might detect an attack against a webserver and provide the
respective URL to HoneyUnit or SiteVet for further analysis.

7.2.2. Tools Augmenting Previous Analysis

This case is similar to the previous case but has one major difference. If a tool is used to
augment the results of another tool, its output needs to be transmitted back to the first
tool. For example, HoneyUnit might detect a PDF document within an examined website
and use the results of PDF Scrutinizer to enrich its own results. It is important to note
here that PDF analysis results are not required by HoneyUnit and thus, this case cannot
be translated into a cyclic version of case one.

7.2.3. Communication aspects of tool group 1.1.4

With regards to interactions between tools of tool group 1.1.4, the major concerns are
how the design for an interface that covers the aforementioned cases should look like
and which tool should transmit the final result to the CCH. Figure 8 illustrates the input
data required by some tools as well as the data provided by the individual tools of tool
group 1.1.4. Data that will be provided but is not used by any other tool is omitted for
the sake of clarity. As the figure illustrates, some tools provide information that can be
exploited by other tools. Currently, this includes URLs, domain information as well as
malware listings. Since these will also be provided to the CCH, a specialised interface for
intra-tool group communication would actually provide a subset of the functionality
required for tool to CCH communication. Given the effort diverted from improving the
ACDC core services for designing and implementing a separate protocol, intra-tool group
communication should use the same protocol as tool to CCH communication.
Solving the second concern can be achieved by either determining a tool that should
collect and store partial results until all contributing tools provided their share of the
result, by creating a tool specifically for that task, i.e. collecting partial results and

 Page 22 / 31

submitting them to the CCH, or by allowing the submission of partial results that will be
updated as new information becomes available. Each of the former two approaches
would require the distribution and maintenance of a significant amount of configuration
throughout the tool group. This particularly requires every tool to have up-to-date
information about all its communication partners.
In the first approach, each tool involved in creating a result set would at least need to
know which tool was responsible for submitting the respective results; for the second
approach, the designated tool would have to know each expected result set. In either
case, failure to update or inconsistencies across configurations for tools maintained by
different partners could lead to either the unavailability or duplication of data sets at the
CCH. Thus, data sets should be stored in the CCH immediately and tools should request
a notification on changes, i.e. the addition of data to a data set that would allow them to
provide additional analysis.
As pointed out in section 5.4 however, tools must not transmit large volume,
unprocessed data to the CCH. If a tool provides large volume data to another tool, there
is good reason to assume that the former acts as a sensor on behalf of the latter. Thus,
these tools become components of a single logical tool and are thus free to define their
own interface for intra-tool communication.

Figure 8: Information required and provided by tools of tool group 1.1.4. Generated information that is not
required by other tools is omitted for the sake of clarity.

7.3. Interaction with other ACDC components

Integrating the tools in the Malicious and Vulnerable Website Tool Group with the ACDC
solution requires them, though generally designed as standalone solutions, to interact with
other components within the ACDC framework. In this section, we describe a design that
allows for such interaction.
In section 7.3.1, we discuss different models for inter-tool communication with respect to
how data sets should be disseminated throughout the solution. Thereafter, we describe in
detail how tools should interact with the CCH. We argue that there should be no

URL

Malware listings

Domain Information

Network sensor data

Device sensor data

Skanna

SiteVet

PDF Scrutinizer

HoneyUnit

WebCheck

AHPS

 Page 23 / 31

decentralised tool-to-tool communication and close this section with a quick recap on the
reasons in section 7.3.3.

7.3.1. Scope of Data Transmissions

To provide a benefit for ACDC stakeholders, data generated by the tools or information
derived therefrom has to be stored in the CCH where it is used to assemble
comprehensive reports for the stakeholders. Some tools may require data generated by
others or be able to provide additional information when a certain datum becomes
available. Thus, the respective data should be made available to both the CCH and those
tools with as little delay as possible.
As the analysis in section 7.2 already suggests, there are several approaches for
achieving this goal. The most simple approach would be to submit data sets from one
tool to exactly one other tool, enriching each data set with the current tool’s analysis
results and submitting the whole data set to the CCH once all other tools provided their
analysis. If any tool would be temporarily unavailable or require a lot of time for
providing its analysis, all other data would be delayed as well.
This could be alleviated by instructing each tool to transmit its data to both the CCH and
any tool that may rely on its results. Such a solution would however require the
distribution of the input requirements throughout the ACDC solution. As tools and the
input they need are likely to evolve, be added or removed over the lifetime of the
solution, this would represent a significant challenge to the maintenance of the tools. In
this scenario, changing the required input for a given tool would require the
configuration for all tools providing its input to be adjusted as well, possibly triggering
yet another round of configuration changes. Until the configuration of all tools affected
was updated, the modified tool would not be able to provide its service. This equally
applies if a single tool changes its output data, since all tools requiring this data may
need to be adjusted. Similarly, adding or removing an entire tool would require all its
communication partners to be adjusted. A more general challenge of tool-to-tool
communication is that every tool has to be able to contact its communication partners.
If these tools were deployed within different independent networks, this would require
the tools to be reachable from the Internet.
To remove the need for distributing requirements throughout the solution, each tool
could submit any data generated to all other tools in the solution. The amount of
unnecessary data transmissions created by such an approach would however have the
potential to cripple the whole solution. In addition to that, each tool would still need an

Figure 9: Visualisation of two approaches for organising data exchange within the ACDC solution.
Geometric shapes represent data exchanged or stored.

Central
Clearing
House

Tool

Tool

Tool

Tool

Tool Tool
Central
Clearing
House

 Page 24 / 31

up-to-date configuration for establishing a communication channel with each of the
other tools. Thus, this approach is infeasible.
Considering the above approaches, the malicious and vulnerable website analysis tool
group avoids messaging to other tools in favour of enriching data sets already stored in
the CCH. This will not only decouple the tools, i.e. allow them to evolve without directly
relying on specific changes being made to other tools or their configuration, but also
ensures that any datum generated by any tool in the tool group will be available at the
CCH as fast as possible. Therefore, the CCH would be able to provide preliminary reports
in case a stakeholder is in urgent need of information on a particular threat, e.g. law
enforcement or industry partners coordinating a takedown effort against a botnet.
Figure 9 illustrates a comparison between a decentralised pipeline approach discussed in
the second paragraph on the on the left hand side and the favoured approach of
exchanging data through the CCH. Geometric shapes represent data generated by tools,
arrows represent message exchanges. Time progresses from top to bottom, i.e. a long
vertical arrow indicates a long processing time. In the example depicted on the left hand
side, tool 1 generates a piece of data that both tool 2 and 3 will use to generate
additional data. While tool 2 can provide its results shortly after tool 1 supplied its data,
no information is available at the CCH before the time consuming analysis of tool 3 is
complete. Using the same requirements and processing times but relaying data through
the CCH, as suggested above, results in a larger overall count of messages, but data
becomes available at the CCH much earlier and, due to the implicit parallelisation of the
processing by tools 2 and 3, even the overall duration of the processing is reduced
significantly.

7.3.2. Communication with the Central Clearing House

As discussed in section 7.3.1, we argue that communication should only take place
between tools and the CCH, i.e. there should be no direct tool-to-tool communication. In
this section, we describe how tools should interact with the CCH, starting with the role
of the entities in network layer communication. The next sections discuss security
requirements and subscription management. Finally, we discuss the message exchanges
required to implement this protocol in section 7.3.2.4.

7.3.2.1. Roles in Network Layer Communication

When a tool communicates with the CCH, each of the peers may assume one of three
roles with regard to the OSI Layer 3/Network Layer:

• Client
• Client and server (peer-to-peer mode)
• Server

To establish a communication channel, a client has to be aware of the server’s
network address. While e.g. the Domain Name System simplifies obtaining the
respective address, the client must have advance knowledge on each server it may
want to communicate with, e.g. its domain name. If the CCH would assume a client
role, it would require that this information is always available and up to date for each
tool provided to the ACDC solution.
In a dynamic environment, where tools may change, possibly move from one physical
machine to another, be split into several smaller or merged into one larger tool, each
of these changes would need to be carried out with close involvement of the CCH
maintainer or otherwise the respective parts of the solutions would be unavailable.
This would however increase the cost for maintaining the CCH without providing a
significant benefit to the ACDC solution. Thus, the CCH should not assume a client
role with respect to the network layer.

 Page 25 / 31

The second option would be to use a peer-to-peer channel, i.e. both the CCH and the
tool it would be communicating with would assume each role at times. A major
drawback of this approach is that the CCH would assume a client role, which is not
desired as discussed above. Moreover, this would require individual tools to assume
a server role. This is also undesirable since it would require tools to be reachable
from the Internet. Finally, implementing a peer-to-peer channel would also require a
lot of configuration effort since each tool would have to maintain a list of
communication partners. As a result, this would imply significantly increasing the
overall cost for implementation and maintenance and thus we discourage the use of
peer-to-peer for the website analysis to CCH communication channel.
Finally, tools could assume a client role on the network layer, contacting a CCH
server. This approach resembles the structure of the ACDC solution with the CCH
providing a central location for storing and refining data gathered by the individual
tools. While tools will need to store the host name or network address of the CCH to
be able to establish a communication channel, particularly a host name is likely to be
long lived. Changes to a tool, including splits, merges and relocations, will remain
transparent to the CCH since it does not require any details on the client to establish
the communication channel. Thus, tools in the website analysis tool group will initiate
connections on the network layer when they need a service provided by the CCH or
are able to provide a service to the CCH.

7.3.2.2. Confidentiality, Integrity and Access Control

To ensure the confidentiality and integrity of data exchanged between website
analysis tools and the CCH, all connections should be encrypted and their integrity be
checked. In addition, access, in particular with regard to operations that add or
modify data, must be limited to trusted parties. These properties will be ensured by
the technology framework developed as part of Task 2.2.
A possible approach for achieving the goals stated above is to wrap any message
exchange in Transport Layer Security (TLS/SSL) sessions, using client certificates
issued by a trusted party for authenticating the client’s identity. The CCH should
monitor the issuer’s Certificate Revocation List for changes and ensure that
connections, including open connections, using revoked certificates will be closed or
rejected.

7.3.2.3. Subscription Management

Providing all data sets to each tool would create an unreasonable amount of
unneeded messaging, particularly since data sets would need to be retransmitted
each time they were updated. In addition to that, legal or contractual limitations may
exist regarding what data a given tool or its operator may access. Thus, a mechanism
must be implemented that allows managing subscriptions, taking into consideration
the aforementioned aspects. Preferably, such a mechanism should be self-serviceable
for the tool developers to facilitate implementation of new or improved approaches
and reduce the administrative overhead for the CCH operator. While further details
of such a mechanism are out of the scope of this document, we assume that it
provides tool operators with an API key or similar mechanism that will be used both
for selecting the appropriate subscription as well as for providing proof that the tool
is authorised to access that particular subscription.
Given such a mechanism, all a tool developer needs to do once its tool’s
requirements change is to obtain an API key for the respective subscription. As soon
as its tool establishes a new communication channel with the CCH, providing the new
key, it is integrated with the ACDC solution.

 Page 26 / 31

Note that some tools may be able to provide different analysis depending on the data
elements available. Therefore, a subscription may contain more than one set of data
elements that would satisfy the requirements of a tool. To improve distinguishability
between sets of data elements stored in the CCH and sets of data elements
requested in a subscription, we will call the latter a “group of data elements” or
“group” hereafter. Each of these groups must receive an ID which is unique with
respect to the subscription they are associated with.
Whenever the CCH creates a new data set or on and only on the addition of data to
an existing data set, it will evaluate or re-evaluate whether that data set now satisfies
any subscriptions that had previously not been satisfied. Thus, each tool may be
served each data set at most once for each group of data elements requested in a
given subscription.

7.3.2.4. Message Exchanges

This section provides a list of message exchanges, indicating the intention and actions
to be taken by each peer when sending or receiving such a message. Since the
technical implementation of the messages should consider the format selected for
representing data that will be part of deliverable 1.7.2, it cannot be defined in full
detail at this time. Thus, the content of the respective messages, provided in the
appendix, will only be defined on a high level using the EBNF syntax in this version of
the document. Note that this allows for implementing all the logic required for these
message exchanges using classes or similar abstractions that only leave the
representation/parsing of the messages in transit open.
Throughout this section, we will make extensive use of the terms “group” or “group
of data elements” as defined in section 7.3.2.3.

7.3.2.4.1. General Mode of Operation

Messages are standardised representations of an intent, data or the result of an
operation. Within this solution, messages MUST NOT be interleaved, i.e. while a
part of a message may be delayed for arbitrary reasons, the communication
channel MUST NOT be used by the party sending that message for any other
means than completing that message. There will be two types of message
exchanges, namely notifications and request-response exchanges. For the latter,
after receiving a request, the responding party MUST NOT send any message
other than the response to the given request. If a message was sent but not
completed while receiving the request, it SHALL however be completed before
sending the response message.
Notifications consist of a single message only and require no further action by
the recipient. At this time, notifications are sent by CCH only. Request-response
exchanges on the other hand MUST only be initiated by a tool and consists of a
message requesting an action by the CCH and a response indicating that the
request was processed and possibly further details, where needed. The CCH
SHOULD buffer an appropriate number of notifications generated while a
message exchange is incomplete but MAY drop older notifications, if the count
of unsent notification exceeds the count deemed appropriate by the CCH
maintainer. Tools SHOULD avoid the loss of notifications by establishing
separate communication channels for delivering data to and receiving data from
the CCH.
The CCH MUST NOT accept requests from a client that has not been successfully
authenticated. The CCH MAY process submissions if a client was authenticated
successfully through other means but otherwise MUST NOT send notifications or
process message exchanges other than the authentication/subscription request

 Page 27 / 31

exchange unless such an exchange has been completed successfully for a given
communication channel. If an error occurs at any stage of receiving, parsing or
processing a request, the CCH MUST close the communication channel to
indicate that an error occurred. If this document defines a response message
indicating a specific error condition, the CCH SHOULD however send that
message instead of closing the communication channel.
Tool maintainers are free to choose an appropriate reaction to a failed message
exchange, e.g. re-establishing the communication channel and repeating a
request or silently ignoring an error message. The CCH MAY however impose a
penalty, e.g. rejecting attempts to establish a communication channel for a short
duration, if a tool appears to generate a significant amount of faulty requests.
Tool maintainers SHOULD keep track of failed message exchanges to be able to
discover errors or misconfigurations.

7.3.2.4.2. Authentication/Subscription Message Exchange

The Authentication/Subscription Message Exchange will be initiated by a tool
after establishing a communication channel with the CCH. When no such
message exchange has been completed successfully for a given channel yet, the
CCH MUST NOT send any notification to the client and MUST reject any message
exchange unless it is explicitly permitted to accept that message exchange by
this document. Whenever a client initiates a Authentication/Subscription
Message Exchange, the CCH MUST cancel any existing subscription for that client
and treat it as if the communication channel had just been established.
If an error occurs when processing a request message, the CCH MUST close the
respective communication channel. If a request was processed successfully, the
CCH SHALL respond with a success message. Both closing the channel as well as
sending a success message MAY be delayed by the CCH to mitigate brute force
attacks, however, subscriptions MUST NOT become effective before a success
message was sent to the client.

7.3.2.4.3. Submission Message Exchange

A Submission Message Exchange is initiated by a tool that wants to store data in
the CCH. It MAY contain a data set ID assigned by the CCH to indicate that the
data set associated with that ID should be updated by inserting the values
supplied or by replacing them, if present. The details for representing that data
will be defined in deliverables 1.2.1 and 1.7.2.
Once a submission is successfully parsed and stored in the CCH, it SHALL send a
submission response success message. If parsing or storing the message fails, the
CCH MUST close the communication channel to indicate that an error occurred.

7.3.2.4.4. Data Set Ready Notification

If after creating or modifying a data set that data set fulfils a subscription
request that it did not fulfil before the given update, the subscriber associated
with that subscription MUST be notified by the CCH. The notification SHALL
include the data set ID for the updated data set and the ID of the group or
groups of data elements that were satisfied by the data set for the first time.
There will be no response to the data set ready notification

 Page 28 / 31

7.3.2.4.5. Request Data Set Message Exchange

When a tool receives a data set ready notification and wants to process the
respective data set, it will send a request for that data set. To indicate the data
elements it needs, the request will include the IDs of the data set in the active
subscription that should be satisfied by the data set. If only one group is
associated with the given subscription, providing the ID of that group is optional.
Upon receiving a data set request, the CCH will search its database for a data set
with the ID indicated in the request. If no data set with the given ID is available,
it SHALL send a data set not available message to the tool, indicating the
requested ID and completing the message exchange.
Otherwise, the CCH will calculate the join of all data elements requested in the
groups referenced by the tool. Should any of those elements not be available,
the CCH MUST complete the message exchange with a data set element not
available message, indicating the requested data set’s ID and the groups that
could not be satisfied at this time.
Finally, if the requested data set is available and contains all requested data
elements, it is encoded in accordance with the specification that will be provided
in deliverable 1.7.2 and delivered to the tool to complete the message exchange.

7.3.3. Communication with other ACDC tools

The arguments given in sections 7.2.2, regarding data transmission within the tool group, and
7.3.1, regarding tool-to-tool communications in general, suggest that there is no immediate
benefit of tool-to-tool communications. On the contrary, it comes at the cost of requiring the
distribution and maintenance of configuration state regarding many, if not all, tools
throughout the ACDC solution. This would increase the cost for operating the ACDC solution
and divert resources from implementing or improving its components to protocol
implementation and maintenance.
With the given lightweight protocol for tool to CCH communications, analysis is implicitly
parallelised and results are provided to the stakeholders through the CCH as soon as possible.
Thus, it is designated to remain the only protocol tools in the Malicious or Vulnerable
Website Analysis Tool Group are required to implement.
We point out that the requirements defined in section 5 do however explicitly allow for tools
to implement their own interface if they do need to exchange data with a given other tool.
Generally, doing so should only be required for large volume data, implying that one tool
would serve as a sensor to another tool, i.e. those tools would serve as a single logical tool
from the ACDC solution’s perspective.

8. Conclusion

Our analysis of the requirements for the very diverse set of tools contributed to the Malicious or
Vulnerable Website Analysis Tool Group indicated that while technically possible, there is little
benefit from implementing a communication protocol either within the tool group or for
exchanging data with other tools directly. Storing data in the CCH immediately, on the other hand,
provides benefits in several areas. First, it will be available to the stakeholders with as little delay
as possible. Secondly, the approach decouples tools, simplifying and thus encouraging their
extension as well as developing new tools or deploying existing tools at new sites. Finally, it
reduces the effort required for implementing the protocol and cuts cost for maintenance,
supporting a long term perspective for the ACDC solution.
This document thus defines how tools should interact with the CCH on a technical level. It also
provides the argument for a self-serviced subscription model, allowing developers to define or
redefine the data needed for their analysis while they are still working on their implementations.

 Page 29 / 31

While some details of the implementation should not be defined without knowing the data
format the CCH will use for providing data sets to the tools in the solution, we provide a high level
description of the respective messages that allow tool maintainers to implement the larger part of
the respective interfaces. The exact representation of those messages will be provided in a later
revision of this document.

 Page 30 / 31

9. Annex

9.1. Messages

This section describes the content of messages exchanged between the CCH and a tool using the
EBNF syntax.

9.1.1. Authentication/Subscription Request Message

API Key = *Authentication and subscription identification key provided
by external subscription method*
Subscription Request Message = API Key

9.1.2. Subscription Response Success Message

Subscription Response Success Message = *Subscription Successful*

9.1.3. Submission Request Message

Data Set ID = *Unique Identifier for a data set, assigned by the CCH*
Tool Data = *Data generated by the initiating tool*
Submission Request Message = [Data Set ID,] Tool Data

9.1.4. Submission Response Success Message

Data Set ID = *Unique Identifier for a data set, assigned by the CCH*
Submission Response Success Message = Data Set ID

9.1.5. Data Set Ready Notification

Data Set ID = *Unique Identifier for a data set, assigned by the CCH*
Subscription Request ID = *Identifier for a request, chosen by the
sender of the respective subscription request message*
Nonempty List of Subscription Request IDs = Subscription Request ID[,
Nonempty List of Subscription Request IDs]
Data Set Read Notification Message = Data Set ID[, Nonempty List of
Subscription Request IDs]

9.1.6. Request Data Set Message

Data Set ID = *Unique Identifier for a data set, assigned by the CCH*
Subscription Group ID = *Identifier for a requested set of data
elements, associated with the currently active subscription*
Nonempty List of Group IDs = Subscription Group ID[, Nonempty List of
Group IDs]
Request Data Set Message = Data Set ID[, Nonempty List of Group IDs]

9.1.7. Requested Data Set Not Available Message

Data Set ID = *Unique Identifier for a data set, assigned by the CCH*
Requested Data Set Not Available Message = Data Set ID

9.1.8. Requested Data Set Element Not Available Message

Data Set ID = *Unique Identifier for a data set, assigned by the CCH*
Subscription Group ID = *Identifier for a requested set of data
elements, associated with the currently active subscription*
Nonempty List of Subscription Group IDs = Subscription Group ID[,
Nonempty List of Subscription Group IDs]

 Page 31 / 31

Requested Data Set Element Not Available Message = Data Set ID, Nonempty
List of Subscription Group IDs

Statement of originality:

This deliverable contains original unpublished work except where clearly
indicated otherwise. Acknowledgement of previously published material
and of the work of others has been made through appropriate citation,
quotation or both.

